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1 Prerequisites

This book is intended to offer practical, step-by-step instructions to solve common problems
when doing data analysis for Personal Science.

We’ll assume some basic tools.

• A spreadsheet like Microsoft Excel
• The programming language R and the associated development environment RStudio

A good introduction to R is Hands On Programming with R
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General Overview
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2 Introduction

There’s something you want to understand, probably about yourself, maybe something health-
or wellness-related, but it might be something about the world around you. The point is that
it’s a question of deep interest to you, though unlikely in its current form to be of enough
interest to involve professionals. You’d like to apply the principles of science — hypothesis,
experiment, analysis — but you don’t know enough of the mechanics to get started.

In other words, like a hungry person in a kitchen full of ingredients, you need a cookbook
of recipes that can explain in a step-by-step, repeatable manner, how to go from the raw
data around you to some fully-baked insights. That’s the purpose of the Personal Science
Cookbook. Each “recipe” is short and self-contained. Some are more complex than others,
but none require any tools or knowledge beyond what is explained in the book.
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3 The Principles of Personal Science

Personal Science is about empowering normal people to use the tools of science to help them-
selves in their daily lives.

When the first microchips enabled desktop computers in the 1970s, people were unsure what
to call them.

The word “mini-computer” was already taken, referring to a generation of computers that
didn’t require entire rooms, so the techie engineers who confronted these new machines called
them “microcomputers”, a moniker that lives on in the name for one of the first software
companies of that generation, Microsoft.

Some people called them “hobby computers”, because that seemed to be all they were good for.
The most influential early gathering of people using them was called the “Homebrew Computer
Club”. The term “desktop” was gaining traction, and inspired later generations that called
them “laptops”, but then the most traditional of all computer companies introduced its first
“IBM PC”, and suddenly the industry had a new term.

It was a “personal computer” because, for the first time, it was cheap enough and easy enough
for a single individual to use it by him (or her) self. In contrast to all previous generations of
computing, everything about the device was intended to be used by a single individual. Even
if the computer was shared, only one person would use it at a time, and all design decisions
reflected that: a single keyboard, monitor, one power switch. You didn’t need a team of people
to set up and care for the device — it was out-of-the-box something that a single person could
set up and use.

It’s easy to forget how transformative this was at the time. Computers until then were very
expensive — many times more than the cost of a car or even a house. You had to be a large
organization — a university, a business — to afford one, and even if somebody magically just
gave one to you, you’d need a special place to keep it, with highly-trained technicians just to
keep it running, and of course even more well-trained engineers and scientists to get it to do
anything useful.

A similar situation exists today in science. New discoveries are made in large institutions, by
teams of high-trained people with access to large, expensive equipment. The discoveries are
discussed and shared by specialists who are followed by a cadre of specialized interpreters —
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journalists, educators, clinicians — who decipher the new scientific results into lay language
and ultimately into face-to-face interaction with the public. Committees meet to discuss
takeaways from the expensive and time-consuming research, reaching conclusions that are
considered generally acceptable enough to result in new actionable treatments and suggestions
for “normal people”.

This gap between the specialists and the general public, like the gap between mainframe
computers and PCs, is eroding thanks to technology.

Actually that’s not quite true: the potential gap between specialists and the general public is
eroding. But reality is still different. It’s as if PCs had been invented but no software.

The personal computer revolution was about more than simply cheaper devices. The hardware
became useful after it spawned an entire industry of dedicated software makers, educational
experts, consultants and systems integrators,

Professional science

We all think science is great…

but what do people mean when they say “science”? 1. Wonder (photos of stars, micrographs,
etc.) 2. Technology (photos of roman arch, integrated circuit, moon landing) 3. A way of
thinking (photos of “amateur” scientists)

It’s tempting to assume that the scientific way of thinking is obvious, and maybe even obviously
the only way to think rigorously but that’s not really true.

Alternatives to the scientific way of thinking: recipes

My definition of science: a predisposition to the assumption that you’re wrong, a nasty mis-
chievous inclination to disbelieve things you can’t prove.

A core scientific skill is curiosity. Always ask “what if…” thinking in hypotheticals

Religion seems like a classic example of unscientific thinking, but even that I’ll challenge. What
if you’re wrong? Is there a way to experiment, test it?

Science is:

• Curiosity
• Skepticism : an unending belief that you are wrong

– Low interest in credentials … just because you are “certified” doesn’t mean you
know any more than I do.

• Bias toward experiments

See Roberts (2004) for examples.
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Part II

Techniques
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4 Getting Started

All of our examples will be based on a common data set. We’ll begin by creating it and
explaining how it works.

Let’s say you are suffering from unexplained headaches that appear somewhat randomly. You
suspect they may be associated with something you eat, but you’re not sure, so you’ve been
tracking 14 weeks (98 days) worth of your own data in a spreadsheet that looks like this:

library(tidyverse, quietly=TRUE)
library(lubridate, quietly=TRUE)

set.seed(1984)

x <- tibble(date=seq(from = today()-weeks(14),
by = "1 day", length.out = 7*14),

headache = sample(c(TRUE,FALSE), 7*14,
prob = c(.05,.95),
replace = TRUE))

knitr::kable( head(x) ) %>% kableExtra::kable_styling()

write_csv(x,"headache-days.csv")

You can download a copy of this file here

It’s easy to add a few more variables (columns) to the dataframe: (download)

date headache
2022-07-19 FALSE
2022-07-20 FALSE
2022-07-21 FALSE
2022-07-22 FALSE
2022-07-23 FALSE
2022-07-24 FALSE
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./headache-days.csv
./headache-variables.csv


date headache icecream z wine
2022-07-19 FALSE TRUE 7.56 0
2022-07-20 FALSE FALSE 7.38 0
2022-07-21 FALSE FALSE 5.51 0
2022-07-22 FALSE TRUE 7.60 0
2022-07-23 FALSE FALSE 8.36 0
2022-07-24 FALSE FALSE 6.92 0
2022-07-25 FALSE FALSE 6.32 0
2022-07-26 FALSE FALSE 7.52 0
2022-07-27 FALSE FALSE 7.95 0
2022-07-28 FALSE FALSE 6.99 0

z <- function(x){
m = NULL
for(i in 1:14){
m = c(c(rep(0,6),

floor(runif(1,min=0,max=3))),
m)

}

m
}
x <- tibble(date=seq(from = today()-weeks(14),

by = "1 day", length.out = 7*14),
headache = sample(c(TRUE,FALSE), 7*14,

prob = c(.05,.95),
replace = TRUE),

icecream = sample(c(TRUE,FALSE), 7*14,
prob = c(.10,.90),
replace = TRUE),

z = runif(7*14, min = -2.5, max = .5) + 8,
wine = z(0))

knitr::kable( head(x,10), digits = 2) %>%
kableExtra::kable_styling(bootstrap_options = c("striped", "hover", "condensed"))

write_csv(x,"headache-variables.csv")

• headache: a day when I have a headache
• icecream: did I eat ice cream that day?
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• wine: Number of glasses of wine I drank.
• z: Number of hours I slept that day.
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5 Methods

Before we discuss techniques for how to analyze your data, let’s cover a few basic methods
that will be useful for all of the example solutions in this book.

5.1 What is a dataframe?

Self-collected data is almost always best represented by a table of the variables you want to
study and the values that you collected for each of those variables. The most common type of
table is a spreadsheet, which in Personal Science we refer to as a data table or a data frame.
Abbreviated “dataframe” or often just “df”, it’s a table of values and variables that always
has the same form:

• columns are variables: the parameters you want to study
• rows are observations: each incident of data you collected.

It’s important to get in the habit of this row/column approach to data collection because, as
you’ll see, all of our tools assume that data will come in a data frame format.

5.1.1 How do I read a dataframe?

Although you are probably used to handling data frames in a spreadsheet program like Excel,
in this cookbook we’ll need to start by reading the data into R.

Solution

Use the Tidyverse readr package. Read a CSV-formatted file with the read_csv function.
Other Tidyverse let you read many other types of data, including Microsoft Excel (XLSX)
files with the function readxl::read_excel().

Regardless of where you get the data, you’ll want to read it into a dataframe. In this case,
we’ll save the CSV contents into the dataframe variable headache_df.

library(tidyverse)
headache_df <- readr::read_csv("headache-variables.csv")
headache_df %>% head() %>% knitr::kable()
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date headache icecream z wine
2022-07-19 FALSE TRUE 7.557071 0
2022-07-20 FALSE FALSE 7.379434 0
2022-07-21 FALSE FALSE 5.512368 0
2022-07-22 FALSE TRUE 7.600135 0
2022-07-23 FALSE FALSE 8.362155 0
2022-07-24 FALSE FALSE 6.924651 0

Here we peeked at the first 6 lines using the function head() and then sent it to the
knitr::kable() function to be printed in this nice format.

5.2 Rolling average

A long series of daily numbers becomes unwieldy after a while, so we’d like to summarize them
somehow, perhaps as groups of weeks or months.

Problem You want to take the rolling 7-day average of a series of numbers.

Solution use the rolling() functions in package zoo:

library(zoo)

headache_df %>%
mutate(sleep7A = rollapply(z,

7,
function(x) {x = mean(x,na.rm = TRUE)},
align = 'right',
fill = NA)) %>%

tail() %>% knitr::kable()

date headache icecream z wine sleep7A
2022-10-19 FALSE FALSE 8.120216 0 6.899738
2022-10-20 FALSE FALSE 5.668099 0 6.738935
2022-10-21 FALSE FALSE 8.093531 0 7.094138
2022-10-22 TRUE FALSE 7.679254 0 7.308210
2022-10-23 FALSE FALSE 7.346326 0 7.283955
2022-10-24 FALSE FALSE 6.019567 2 7.321820

Using the Tidyverse mutate() function, we created a new variable sleep7A to hold the 7-day
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rolling average for our sleep (Z) variable.

Problem How do we skip the days in between and summarize just the averages by week?

Solution Use summarize().

The Tidyverse function lubridate::week() returns the number of complete seven day periods
that have occurred between the date and January 1st, plus one.

headache_weeks <- headache_df %>%
mutate(week = lubridate::week(date)) %>%
group_by(week) %>%
summarize(week_ave = mean(z))

headache_weeks

# A tibble: 15 x 2
week week_ave

<dbl> <dbl>
1 29 7.01
2 30 7.42
3 31 7.09
4 32 7.04
5 33 7.33
6 34 6.65
7 35 6.94
8 36 6.96
9 37 7.10
10 38 7.05
11 39 6.98
12 40 6.79
13 41 6.72
14 42 7.09
15 43 7.02

headache_weeks %>% ggplot(aes(x=week, y = week_ave)) +
geom_line() +
labs(title = "Weekly Average for Z", y = "Hours (Weekly Ave)")
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5.3 Granger Causality

Problem: Given two sets of time series data, x and y, how likely is it that one series will
influence the other.

Solution: see Chicken or the Egg? Granger-Causality for the masses
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6 Applications

Load the data we created in our Chapter 4 example.

x <- readr::read_csv("./headache-variables.csv", show_col_types = FALSE)

With my 14 weeks of data, we can do a few basic calculations:

How frequent are my headaches? Simply total the number of headaches and divide by number
of days:

# headaches per day
sum(x$headache) / length(x$headache)

[1] 0.08163265

6.1 Hypothesis

With the data collected and in a nice dataframe format, we can start to ask what might be
driving the headaches. One of the first suspected culprits might be something that I eat.

Based on the data collected so far, can I make any guesses about what might be driving my
headaches?

The most obvious place to check is whether I see any patterns on the days when I have
headaches. Let’s filter for headache days only:

x %>% filter(headache) %>% kableExtra::kable() %>%
kableExtra::kable_styling(bootstrap_options = c("striped", "hover", "condensed"))

But maybe the headache takes a day or two to kick in. We can divide the data by week and
see if we can spot any patterns in headache frequency:

x %>% group_by(week = ntile(date,7)) %>%
summarise(headaches = sum(headache),
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date headache icecream z wine
2022-07-30 TRUE TRUE 8.478644 0
2022-08-14 TRUE FALSE 6.880779 0
2022-08-21 TRUE FALSE 6.909671 0
2022-09-08 TRUE FALSE 7.278277 0
2022-09-16 TRUE FALSE 7.797994 0
2022-10-02 TRUE TRUE 8.385846 0
2022-10-05 TRUE FALSE 5.849701 0
2022-10-22 TRUE FALSE 7.679254 0

week headaches alcohol icecream
1 1 0 4
2 1 1 0
3 1 3 0
4 1 2 1
5 1 4 1
6 2 3 3
7 1 3 0

alcohol = sum(wine),
icecream = sum(icecream)) %>% kableExtra::kable() %>%

kableExtra::kable_styling(bootstrap_options = c("striped", "hover", "condensed"))

Buy simply eye-balling the data this way, you might see a pattern. For example, you might
spot a week or two with an unusually large number of headaches and notice those weeks are
accompanied by an unusually large consumption of some particular food.

But how do you know you’re not just guessing? What looks like a pattern might be a coinci-
dence. To find out with more certainty, we will apply some statistics.

6.2 T-Testing

Hint: an Excel version of this exercise is in Section 12.1 .

The simplest test is called a “T Test”. This is a formula that can compare two equal-sized lists
of numbers and return the probability that any differences between the two are the result of
chance.

What are the chances that the number of headaches per week is related to the amount of ice
cream I eat per week?
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week headaches alcohol icecream
1 1 0 4
2 1 1 0
3 1 3 0
4 1 2 1
5 1 4 1
6 2 3 3
7 1 3 0

If there were a relationship between ice cream and headaches each week, I’d expect that over
the weeks in this period, the total number of headaches and the total number of ice cream
days should be roughly equal.

x_week <- x %>% group_by(week = ntile(date,7)) %>%
summarise(headaches = sum(headache),

alcohol = sum(wine),
icecream = sum(icecream))

x_week %>% kableExtra::kable() %>%
kableExtra::kable_styling(bootstrap_options = c("striped", "hover", "condensed"))

with(x_week, t.test(headaches,icecream))[["p.value"]]

[1] 0.8254265

By convention, a p-value less than 0.05 (that is, less than 5\%) is considered statistically
significant. While this is not a hard and fast rule, it’s often a good place to start. A p-value
greater than this is almost certainly due to chance.

6.3 Data visualization

The first step in a more sophisticated analysis is to plot the data to see if we can spot any
particular patterns.

x_week %>% pivot_longer(names_to = "activity",
values_to = "amount",
cols = alcohol:icecream ) %>%

ggplot(aes(x=week,y=headaches)) +
geom_bar(aes(x=week,y=amount, fill = activity),

position = "dodge",
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stat = "identity") +
geom_line(aes(x=week,y=headaches))
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7 Machine learning

When you are tracking lots of variables, it can be difficult to spot exactly which ones are
driving an effect.

In this example, we’ve fudged the data so that headaches always happen only on days with
less than 6 hours of sleep.

Also, headache days always have high stress. But sometimes we have high stress even without
a headache.

library(tidyverse)
library(lubridate)

set.seed(1984)
WEEKS <- 140

z <- function(x){
m = NULL
for(i in 1:WEEKS){
m = c(c(rep(0,6),

floor(runif(1,min=0,max=3))),
m)

}

m
}
tracking_table <- data.frame(date=seq(from = today()-weeks(WEEKS),

by = "1 day", length.out = 7*WEEKS),
headache = sample(c(TRUE,FALSE), 7*WEEKS,

prob = c(.05,.95),
replace = TRUE),

stress = sample(c("low","medium","high"),
size = 7*WEEKS,
replace = TRUE),

icecream = sample(c(TRUE,FALSE), 7*WEEKS,
prob = c(.10,.90),
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date headache stress icecream z wine
2020-06-03 FALSE high FALSE 8.24 0
2020-06-04 FALSE high FALSE 6.60 0
2020-06-05 FALSE medium TRUE 7.16 0
2020-06-06 FALSE low FALSE 6.89 0
2020-06-07 FALSE high FALSE 6.04 0
2020-06-08 FALSE high FALSE 7.34 0
2020-06-09 TRUE high FALSE 5.74 0
2020-06-10 FALSE high FALSE 6.87 0
2020-06-11 FALSE low FALSE 7.23 0
2020-06-12 FALSE high FALSE 6.89 0

replace = TRUE),
z = runif(7*WEEKS, min = -2.5, max = .5) + 8,
wine = z(0))

tracking_table$headache <- tracking_table$z<6 # make headaches on days with low sleep
# tracking_table[tracking_table$stress=="high"] <- "high" # make stress on headache days

knitr::kable( head(tracking_table,10), digits = 2) %>%
kableExtra::kable_styling(bootstrap_options = c("striped", "hover", "condensed"))

Now make a linear model using the 980 rows from our dataframe.

m <- lm(headache~icecream+z+wine+stress, data = tracking_table)
summary(m)

Call:
lm(formula = headache ~ icecream + z + wine + stress, data = tracking_table)

Residuals:
Min 1Q Median 3Q Max

-0.46762 -0.21394 -0.03199 0.16852 0.57443

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.085871 0.073447 28.400 <2e-16 ***
icecreamTRUE 0.030793 0.028976 1.063 0.288
z -0.272406 0.010301 -26.445 <2e-16 ***
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wine -0.002729 0.019588 -0.139 0.889
stresslow -0.012375 0.022061 -0.561 0.575
stressmedium -0.034324 0.021410 -1.603 0.109
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2776 on 974 degrees of freedom
Multiple R-squared: 0.4216, Adjusted R-squared: 0.4186
F-statistic: 142 on 5 and 974 DF, p-value: < 2.2e-16

Those triple dots (“***”) in the right-hand column for Coefficients indicate items of very high
significance.

In this case, as expected, there seems to be a strong relationship between both sleep and
stress.

A quick yet dramatic way to visualize this uses the stat_smooth function of ggplot:

tracking_table %>% ggplot(aes(y=headache, x=z)) + geom_point() + stat_smooth(formula = y~x, method = "lm", color = "red") +
facet_grid(headache ~ stress)
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We clearly see that headaches always occur on days when Z<6.
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And here’s what happens if we change the data so headaches always happen when stress is
high.

tracking_table[tracking_table$stress == "high",]$headache <- TRUE

tracking_table %>% ggplot(aes(y=headache, x=z)) + geom_point() + stat_smooth(formula = y~x, method = "lm", color = "red") +
facet_grid(headache ~ . + stress) +
labs(title = paste("Adj R2 = ",signif(summary(m)$adj.r.squared, 5),

"Intercept =",signif(m$coef[[1]],5 ),
" Slope =",signif(m$coef[[2]], 5),
" P =",signif(summary(m)$coef[2,4], 5)))
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Adj R2 =  0.41862 Intercept = 2.0859  Slope = 0.030793  P = 0.28817

As expected, the plot shows headaches either when z<6 or when stress is high.
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8 headaches

Another way to study this data is through machine learning. Instead of a straightforward
mathematical transformation of all the data, we can take a subset (called the “training” set)
and use algorithms to build a model to describe the data. Then we can apply that model to
the rest of the data (called the “test” set).

library(tidyverse)
library(caret)

Loading required package: lattice

Attaching package: 'caret'

The following object is masked from 'package:purrr':

lift

8.1 Generate the sample data

# create a data frame with the generated data
mydata <- tracking_table
mydata$migraine <- if_else(mydata$headache, "yes","no")
mydata$migraine <- factor(mydata$migraine)
mydata$sleep <- mydata$z
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8.2 Select a random subset for training

# select 25% of the rows from the data frame for training

mydata_train <- mydata %>% sample_frac(size=0.25)

# use the remaining rows for testing
mydata_test <- mydata %>% anti_join(mydata_train)

Joining, by = c("date", "headache", "stress", "icecream", "z", "wine",
"migraine", "sleep")

response <- "migraine"

8.3 Make a prediction model

# Convert the response variable to a factor
mydata_train$headache <- as.factor(mydata_train$headache)
mydata_test$headache <- as.factor(mydata_test$headache)

# Train the model using the training data
model_caret <- caret::train(migraine ~ stress + icecream + z + wine,

data = mydata_train,
method = "glm",
family = binomial())

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge
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Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
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Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
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Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge
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Warning: glm.fit: algorithm did not converge
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Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge
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Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

# Make predictions on the test data
predictions_caret <- predict(model_caret, mydata_test)

# Evaluate the model's performance on the test data
performance_caret <- postResample(predictions_caret, mydata_test$migraine)
print(performance_caret)

Accuracy Kappa
0.9768707 0.9121351

8.4 Plot the result

# Plot the model's predictions against the actual values
ggplot(mydata_test, aes(x = predictions_caret, y = mydata_test[,response])) +
geom_point() +
geom_abline(intercept = 0, slope = 1, color = "red") +
xlab("Predictions") +
ylab("Actual Values") +
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ggtitle("Prediction vs Actual Values")
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9 Handling microbiome data

9.1 A word about microbiome sequencing

When a microbiome sample is sequenced by a genetic sequencing machine, the results are
presented in large files, called FASTQ, made of the A, C, T, G letters of the genetic code
along with other information about measurement accuracy and more. The final report sent
to you as a customer, builds from these files using a bioinformatics “pipeline” designed to
summarize the genetic code into a more readable format. Embedded within the pipeline are
dozens of assumptions about how to best interpret the genetic letters, including how to handle
cases where the interpretation is unclear, or even arbitrary. For example, although the sequence
of a common microbe like Streptococcus mutans is well-understood, how close does a sequence
have to be before the report can confidently describe it as a member of that species? Different
pipelines make different assumptions. One might say it can be off by 10 letters, while another
might say 5; other pipelines might judge based on the particular microbe. And what should
the report do when the sequencer returns less-than-confident results? No sequencer can be
perfect all of the time, so by necessity some allowance must be made for how much leeway
should be allowed in an interpretation.

9.2 Microbiome datasets are compositional

Once the pipeline has been tweaked to give consistent answers for a particular lab, another
question awaits.

Since most tests report the relative abundance of a particular microbe, the totals will always
sum to 100%. While this makes sense when you want to know the overall composition of the
microbiome, it may not be as useful when studying how the results from one day compares to
another.

The reason is compositionality, sometimes called the “sum to 1” problem. To explain this, let’s
use a concrete example.
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9.3 Example

Suppose we have the following result for our first test:
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Test 1
Microbe Absolute Relative
A 100 10%
B 500 50%
C 400 40%
D 0 0%

Total 1000 100%

We don’t specify the units in the “Absolute” column, but it can be whatever you like: grams,
tons, mg/mL – it doesn’t matter. In this simple example, we measure a total of 1000 (of
something) and compute the various relative amounts. All is well.

In our second test, for whatever reason, we collect a lot more stuff, leading to a larger absolute
amount but the relative amounts are unchanged.

Test 2
Microbe Absolute Relative
A 150 10%
B 750 50%
C 600 40%
D 0 0%

Total 1500 100%

But now consider a different case. This time, for some reason one of the three microbes has
a massive increase in absolute terms. Importantly, none of the other microbes changed. This
might happen if your sample were somehow contaminated, for example, perhaps from some
extraneous microbe entering the tube after you sampled it. Or it could be that the sampling
site suddenly had a new growth of an new microbe that doesn’t affect anything else. Lots of
reasons could explain why the absolute values of various microbes could be unchanged even
the relative values are substantially different.

Test 3A
Microbe Absolute Relative
A 150 8%
B 750 38%
C 600 30%
D 500 25%
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Test 3A
Total 2000 100%

But you don’t need contamination for a slight change in one microbe to have a major impact
on the relative abundance of the others.

Watch what happens when two microbes, A and B, are unchanged while two others swap
abundance amounts.

Test 3B
Microbe Absolute Relative
A 150 8%
B 750 38%
C 700 35%
D 400 20%

Total 2000 100%

A and B appear to have the same relative abundances they did in Test 2. This simple case
matches our intuition: we expect that the relative values of A and B would be no different
than Test 3A. The absolute totals are the same, so again all is well.

But microbes exist in an ecology. They’re not independent of one another. Often an increase
or decrease in one will drive a corresponding change in another.

Consider the interesting case where one one microbe (A) doubles in abundance, causing another
(B) to halve. Although the changes are directly related to one another, it’s hard to see that
in the type of relative summary we get from our report.

Test 2B
Microbe Absolute Relative
A 200 24%
B 250 29%
C 400 47%
D 0 0%

Total 850 100%

In 2B, a major change happened – the abundance of one microbe (A) exploded and caused
another (B) to plunge. Although another, independent microbe (C) was completely unaffected
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by this change, when we look only at the relative differences, we might be fooled into thinking
that C changed as well, though it didn’t.

Which matters more, absolute values or relative ones? To the extent that the microbiome
is synthesizing or digesting various metabolites in the body, it’s clear that absolute values
are what we want to watch. But absolute abundances are too hard to track – you’d need
to grab the entire microbiome somehow. So instead we assume that the microbiome as a
whole maintains a roughly constant absolute volume and that the only change is the relative
abundances.

Is that true? It seems unlikely. Other living populations rise and fall depending on all sorts
of factors. Your backyard garden, for example, doesn’t have the same absolute volume from
one day to another. If you only knew the relative percentage of tomatoes versus cucumbers,
would you really know much about your harvest?

9.4 The solution

This problem has been noticed for more than a hundred years in every field touched by statis-
tics: ecology, economics, geology and more. Whenever you have an instrument that can only
measure a subset of something, you must make allowances for the fact that the final measure
is reported in units of 100%.

The solution is to make calculations based not on overall percentages, but on ratios of each
component. The statistics are more complicated, but that’s the only way to make the final
result usable.

9.5 Bottom line

It’s very hard to make judgements one way or another from simple comparisons of relative
abundance changes from one sample to another. Too many factors determine the measured
levels of the various microbes.

Despite this, we know empirically that the overall relative abundances are reasonably stable
from one collection to another. Not precisely stable, but at least at the highest, say, phylum
levels, the abundances track fairly consistently from day to day. In the oral microbiome, for
example, Streptococcus is almost always the lead phylum, with Neissaria and Rothia competing
with a few others for second or third place.

Meanwhile, in larger population studies of say thousands of people sampled multiple times,
some significant patterns emerge of microbes that are consistently over- or under-represented
in various disease states.
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Figure 9.1: FIGURE 1 (from Gloor et al. (2017))) High-throughput sequencing data are com-
positional. (A) illustrates that the data observed after sequencing a set of nucleic
acids from a bacterial population cannot inform on the absolute abundance of
molecules. The number of counts in a high throughput sequencing (HTS) dataset
reflect the proportion of counts per feature (OTU, gene, etc.) per sample, multi-
plied by the sequencing depth. Therefore, only the relative abundances are avail-
able. The bar plots in (B) show the difference between the count of molecules and
the proportion of molecules for two features, A (red) and B (gray) in three samples.
The top bar graphs show the total counts for three samples, and the height of the
color illustrates the total count of the feature. When the three samples are se-
quenced we lose the absolute count information and only have relative abundances,
proportions, or “normalized counts” as shown in the bottom bar graph. Note that
features A and B in samples 2 and 3 appear with the same relative abundances,
even though the counts in the environment are different. The table below in (C)
shows real and perceived changes for each sample if we transition from one sample
to another.
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Or consider our garden analogy. Knowing the relative percentage of tomatoes and cucumbers
might be useful if we had data meticulously collected from thousands of other backyard gardens,
along with some “metadata” about each gardener’s assessment of their harvest. You might
notice, then, that gardeners unhappy with their tomato crop tend to have lower cucumber
yield too. Or there might be a strong correlation between tomato yield and herbicide usage
– on average. Still, many or perhaps even most gardens will be significantly different. For
example, if the relative abundances appear to match the average, you might be fooled into
thinking that a garden suffering from an overall poor harvest is fine.

In other words, treat numbers like “relative abundance” with an appropriate level of skepti-
cism.

Gloor et al. (2017)
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10 Averages vs n-of-1

Consider the following case:

1000 people took Vitamin D for 6 months. We measured their Vitamin D levels before and
after, and sure enough: the average levels after are higher than before.

More specifically, let’s say the average at the beginning of the study is 30 mg/nL, widely
considered the absolute minimum for a healthy person.

study <- tibble(subject=1:N,
vitamind=rnorm(n=N,

mean=MEAN_VITAMIN_D,
sd=MEAN_VITAMIN_D

)
) %>%

transmute(subject, vitamind=if_else(vitamind<0, 0,vitamind))

study_plot <- study %>% ggplot(aes(x=subject,y=vitamind)) +
geom_point() +
geom_smooth(method= lm, formula= y ~ x, color="red") +
labs(x="Subject", y = "Vitamin D (ng/mL)", title = "Vitamin D levels in all subjects")

study_plot
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Figure 10.1: Red line indicates the average slope of the points

Note that, although the average level is about 30 mg/mL, there are many subjects whose levels
are considerable above and below that.

maxd <- max(study$vitamind)
study_plot +
geom_rect(xmin=0,ymin=0,xmax=N, ymax=MEAN_VITAMIN_D - sd(1:MEAN_VITAMIN_D),

fill = "lightblue",
alpha = 0.007) +

geom_rect(xmin=0,ymin=MEAN_VITAMIN_D + sd(1:MEAN_VITAMIN_D),xmax=N, ymax=maxd,
fill = "lightblue",
alpha = 0.007)
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Figure 10.2: Shaded area represents points more than a standard deviation outlier.

Another way to represent the study is with a boxplot variation called a violin plot.

study %>% ggplot() +
geom_violin(aes(x=subject,y=vitamind),

draw_quantiles = c(0.25, 0.5, 0.75)) +
labs(x="", y = "Vitamin D (ng/mL)", title = "Vitamin D levels in all subjects")
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Figure 10.3: The width of this plot shows the proportion of subjects at particular Vitamin D
levels. (The horizontal lines indicate the different quartiles of the data)

To make this more fun, let’s assume we have additional information about the subjects in our
trial.

study <- cbind(study,
nationality = replicate(N, sample(c("USA","Japan","Europe"),size=1)),
weight = rnorm(n=N, mean = 120, sd = 50))
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11 Final Words

Download a copy in PDF or ePub.
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12 Appendix: Excel Examples

12.1 Is it chance? T-Test

Problem

You tried an intervention and want to see if it worked. How likely is it that the results were
chance?

Solution

One of the simplest tests is a “T-Test”, sometimes called a “Student T Test”.

Statisticians use the concept of P Value to discuss the how often a result might appear to be
significant even when it’s not. While this crude measure doesn’t describe all the ways some-
thing might happen due to chance, generally the lower the P Value, the better. Professional
scientists, especially those who understand statistics, will get touchy if you claim a result
based purely on P Values, but for Personal Science purposes, it’s a good start. There is no
“correct” cutoff value that can determine the likelihood that something is due to chance alone,
but traditionally people assume that anything under 0.05 deserves a closer look.

Here’s an example for how to do this in Excel.

Suppose you’d like to know if taking a melotonin supplement will help you sleep longer. You’ve
measured your daily sleep, taking the supplements on some days (the “intervention”) and not
on others (“control”).

A simple spreadsheet might look like this:
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Track your sleep under two columns: one for nights when you took the supplement, and the
other for nights you didn’t.

The built-in Excel statistical function T.TEST will calculate the P-Value when you give it two
ranges, the “intervention” (nights we took melotonin) and the “control” (nights without).

See the screenshot for the exact formula in this case:

=T.TEST(array1,array2,tails,type)

Enter a 1 for tails (because we’re only interested in one measurement, sleep) and a 2 for type
(because in this case our samples are not of the same length).

The P Value in this example, 0.24, is above 0.05 and therefore we will assume that any
difference in sleep between the nights is due to pure chance.
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